NCP1653, NCP1653A
2 Vac * 4 V Vac
Ivac +
[
IS +
IL
Pin + ac +
Vout
Vcontrol
96% I ref ref I FB
R1
Pout + h Pin + h
Vout
stands for the RMS. I vac is a constant in the 50 or 60 Hz
bandwidth. Multiplier resistor R M is the external resistor
connected to the multiplier voltage V M pin (Pin 5). It is also
constant. R M directly limits the maximum input power
capability and hence its value affects the NCP1653 to
operate in either “follower boost mode” or “ constant
output voltage mode”.
(eq.9)
Rvac ) 12 k W R vac
Sense current I S is proportional to the inductor current I L
as described in (eq.10). I L consists of the high ? frequency
component (which depends on di/dt or inductor L) and
low ? frequency component (which is I L ? 50 ).
RCS (eq.10)
RS
Control current I control is a roughly constant current that
comes from the PFC output voltage V out that is a slowly
varying signal. The bandwidth of I control can be
additionally limited by inserting an external capacitor
C control to the control voltage V control pin (Pin 2) in
Figure 30. It is recommended to limit f control , that is the
bandwidth of V control (or I control ), below 20 Hz typically to
achieve power factor correction purpose. Typical value of
C control is between 0.1 m F and 0.33 m F.
V reg
300 k
I control =
I
Regulation Block
over the bandwidth of 50 or 60 Hz and power factor is
corrected.
Practically, the differential ? mode inductance in the
front ? ended EMI filter improves the filtering performance
of capacitor C filter . Therefore, the multiplier capacitor C M
is generally with a larger value comparing to the filter
capacitor C filter .
Input and output power (P in and P out ) are derived in
(eq.13) when the circuit efficiency η is obtained or
assumed. The variable V ac stands for the RMS input
voltage.
V  2   2 RS R vac Icontrol Vref Vac
Zin RM RCS Vout
(eq.13a)
Icontrol Vac
T
2 RS R vac Icontrol Vref Vac
RM RCS Vout
(eq.13b)
Icontrol Vac
T
Follower Boost
The NCP1653 operates in follower boost mode when
I control is constant. If I control is constant based on (eq.13), for
a constant load or power demand the output voltage V out of
the converter is proportional to the RMS input voltage V ac . It
means the output voltage V out becomes lower when the RMS
input voltage V ac becomes lower. On the other hand, the
output voltage V out becomes lower when the load or power
demand becomes higher. It is illustrated in Figure 31.
Vcontrol
2
Ccontrol
V out (Traditional boost)
Figure 30. V control Low ? Pass Filtering
V out (Follower boost)
Ccontrol u
1
2 p 300 k W fcontrol
(eq.11)
V in
From (eq.7) ? (eq.10), the input impedance Z in is
re ? formulated in (eq.12).
time
Zin +
RM RCS Vac Vout IL
2 RS R vac Icontrol Vref IL ? 50
P out
Zin +
RM RCS Vac Vout
2 RS R vac Icontrol Vref
whenIL + IL ? 50
(eq.12)
Figure 31. Follower Boost Characteristics
time
The multiplier capacitor C M is the one to filter the
high ? frequency component of the multiplier voltage V M .
The high ? frequency component is basically coming from
the inductor current I L . On the other hand, the filter
capacitor C filter similarly removes the high ? frequency
component of inductor current I L . If the capacitors C M and
C filter match with each other in terms of filtering capability,
I L becomes I L ? 50 . Input impedance Z in is roughly constant
Follower Boost Benefits
The follower boost circuit offers an opportunity to reduce
the output voltage V out whenever the RMS input voltage
V ac is lower or the power demand P out is higher. Because
of the step ? up characteristics of boost converter, the output
voltage V out will always be higher than the input voltage
V in even though V out is reduced in follower boost operation.
http://onsemi.com
11
相关PDF资料
NCP2993FCT2GEVB BOARD EVAL NCP2993 AUDIO PWR AMP
NCP345SNT1G IC DETECTOR OVER VOLTAGE 5TSOP
NCP346SN2T1G IC DETECTOR OVER VOLTAGE 5TSOP
NCP347MTAITBG IC OVERVOLTAGE PROT CTRLR 10WDFN
NCP348AEMUTBG IC MOSFET DRIVER DUAL 12V 10LLGA
NCP360MUTXG IC CTLR USB POS OVP FET 6-UDFN
NCP361MUTBG IC USB OVERVOLT PROT CTRLR 6UDFN
NCP3712ASNT3 IC SWITCH OVP HIGH SIDE SC74-6
相关代理商/技术参数
NCP1653GEVB 制造商:ON Semiconductor 功能描述:NCP1653 PFC CCM STEP-UP - Bulk 制造商:ON Semiconductor 功能描述:BOARD EVAL FOR NCP1653
NCP1653P 功能描述:功率因数校正 IC Fixed Frequency RoHS:否 制造商:Fairchild Semiconductor 开关频率:300 KHz 最大功率耗散: 最大工作温度:+ 125 C 安装风格:SMD/SMT 封装 / 箱体:SOIC-8 封装:Reel
NCP1653PG 功能描述:功率因数校正 IC Fixed Frequency Current Mode PFC RoHS:否 制造商:Fairchild Semiconductor 开关频率:300 KHz 最大功率耗散: 最大工作温度:+ 125 C 安装风格:SMD/SMT 封装 / 箱体:SOIC-8 封装:Reel
NCP1654BD133R2G 功能描述:功率因数校正 IC NCP1654 - 133KHZ RoHS:否 制造商:Fairchild Semiconductor 开关频率:300 KHz 最大功率耗散: 最大工作温度:+ 125 C 安装风格:SMD/SMT 封装 / 箱体:SOIC-8 封装:Reel
NCP1654BD200R2G 功能描述:功率因数校正 IC NCP1654 - 200KHZ RoHS:否 制造商:Fairchild Semiconductor 开关频率:300 KHz 最大功率耗散: 最大工作温度:+ 125 C 安装风格:SMD/SMT 封装 / 箱体:SOIC-8 封装:Reel
NCP1654BD65R2G 功能描述:功率因数校正 IC NCP1654-65K-B-SOIC RoHS:否 制造商:Fairchild Semiconductor 开关频率:300 KHz 最大功率耗散: 最大工作温度:+ 125 C 安装风格:SMD/SMT 封装 / 箱体:SOIC-8 封装:Reel
NCP1654BP65G 功能描述:功率因数校正 IC NCP1654-65K-B-PDIP RoHS:否 制造商:Fairchild Semiconductor 开关频率:300 KHz 最大功率耗散: 最大工作温度:+ 125 C 安装风格:SMD/SMT 封装 / 箱体:SOIC-8 封装:Reel
NCP1654PFCGEVB 功能描述:电源管理IC开发工具 NCP1654 PWR FACT CONT EVB RoHS:否 制造商:Maxim Integrated 产品:Evaluation Kits 类型:Battery Management 工具用于评估:MAX17710GB 输入电压: 输出电压:1.8 V